首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3105篇
  免费   314篇
  国内免费   815篇
  2023年   62篇
  2022年   91篇
  2021年   124篇
  2020年   154篇
  2019年   156篇
  2018年   152篇
  2017年   118篇
  2016年   136篇
  2015年   136篇
  2014年   152篇
  2013年   184篇
  2012年   116篇
  2011年   149篇
  2010年   101篇
  2009年   130篇
  2008年   118篇
  2007年   163篇
  2006年   137篇
  2005年   174篇
  2004年   122篇
  2003年   134篇
  2002年   150篇
  2001年   133篇
  2000年   86篇
  1999年   106篇
  1998年   71篇
  1997年   84篇
  1996年   71篇
  1995年   78篇
  1994年   75篇
  1993年   83篇
  1992年   76篇
  1991年   48篇
  1990年   59篇
  1989年   52篇
  1988年   48篇
  1987年   37篇
  1986年   22篇
  1985年   26篇
  1984年   21篇
  1983年   8篇
  1982年   28篇
  1981年   20篇
  1980年   9篇
  1979年   11篇
  1978年   3篇
  1977年   6篇
  1976年   3篇
  1975年   3篇
  1958年   4篇
排序方式: 共有4234条查询结果,搜索用时 309 毫秒
991.
Response of lakes to the reduction of phosphorus load   总被引:1,自引:0,他引:1  
On occasion of the publication of a book (H. SAS, ed.) a discussion of the predictability of the response of eutrofied lakes on a reduced external phosphorus loading is presented. Whereas the OECD study examines the correlations between nutrient loading and indicators for eutrofication for groups of lakes, the book discusses the direction of the response on reduction of the phosphorus loading for individual lakes. Although this is a valuable analysis that can increase the insight in the mechanisms controlling lake responses, neither the OECD study nor this book yield sufficiently unquestioned data that can be used directly in a a management framework. The relationships between loading and inlake concentration and between phosphate concentration and chlorophyll are discussed in some detail.  相似文献   
992.
ABSTRACT. Adults of many species of Lepidoptera, principally the males, frequent mud puddles, edges of streams, carrion and animal excreta where they imbibe moisture, an activity referred to as 'puddling' Sodium ions are the only known stimulus present which cause males of at least two lepidopteran species to drink for extended periods. In the European skipper Thymelicus lineola (Ochsenheimer) (Lepidoptera: Hesperiidae), only males puddle, even though they have concentrations of abdominal sodium 2–3 times that of females at emergence. During their first mating, males transfer 32% of their abdominal sodium to females. This could be of considerable importance given that an average egg complement contains >50% of the total body sodium of females at emergence. Virgin females, as well as having reduced fecundity, have reduced longevity. This is attributed to virgins not obtaining important nutrients which males transfer to females during mating. Access to sodium ions increases the total number of matings by c. 50% for males living >15 days. Access to sodium ions by once-mated males increases the percentage of males which re-mate on the day following first mating; the percentage of females, mated to the twice-mated males, which lay >50% fertile eggs; and the drought resistance of eggs laid by those females.  相似文献   
993.
994.
Transport of phosphorus,nitrogen, and carbon by the Apure River,Venezuela   总被引:1,自引:1,他引:0  
The concentrations and transport of carbon, nitrogen, and phosphorus were studied in the Apure River, Venezuela, over a period of 21 months. The drainage basin, which is in western Venezuela, encompasses 167,000 kM2, most of which has low relief and supports tropical savanna vegetation. Average runoff for the period of study was 361 mm/year. Discharge-weighted mean concentrations were 188 ug/l for total P, 957 ug/l for total N, and 9.8 mg/l for organic C. Annual transport was 0.68 kg· ha-1· year-1 for total P, 3.45 kg · ha-1· year-1 for total N, and 35.4 kg · ha-1 · year-1 for organic C. Particulate matter accounted for 68% of P, 54% of N, and 37% of C transport. The yield of carbon from the Apure watershed agrees well with empirical predictions, based mostly on the temperate zone, for watersheds of similar size and water yield.Seasonal patterns in chemistry are tied strongly to the hydrologic cycle. When the wet season begins, rising water flushes organic matter from side channels and produces a sharp increase in particulate C and N. Particulate P, which is associated more with mineral material, also increases during rising water. All dissolved constituents except inorganic C also increase over the rising-water phase. As the river inundates the floodplain, the concentration of nitrate declines, whereas the concentrations of dissolved organic C and N continue to rise. At high water the floodplain appears to store sediments that are later remobilized. During low water, all fractions except dissolved inorganic C tend to be at minimum concentration.Soluble reactive P, total dissolved P, dissolved inorganic C, and dissolved organic C were successfully modelled as hyperbolic functions of discharge. No significant relationships were found between concentration and discharge for any particulate fraction because the flushing and storage mechanisms affecting these fractions occurred within specific hydrologic phases, rather than as a smooth function of discharge. No significant relationships were found for any nitrogen fraction. For nitrate, and thus for total dissolved N, of which nitrate is a major component, poor conformance to standard models is explained by association of key mechanisms (e.g. uptake) with specific hydrologic phases. Particulate components and nitrate in this sense violate the continuity assumptions implicit in the standard models.  相似文献   
995.
Phosphorus and nitrogen retention in five Precambrian shield wetlands   总被引:11,自引:7,他引:4  
Phosphorus and nitrogen mass balances of five wetlands (two beaver ponds, two conifer-Sphagnum swamps and one sedge fen) situated in three catchments in central Ontario, Canada, were measured. Monthly and annual input-output budgets of total phosphorus (TP), total nitrogen (TN), total organic nitrogen (TON), total inorganic nitrogen (TIN), ammonium ion (NH4 + -N), nitrate (NO 3 -N) and dissolved organic carbon (DOC) were estimated for the five wetlands during the 1982–83 and 1983–84 water years. Except for the deepest beaver pond (3.2 m) which had annual TP retention of –44% (–0.030 ± 0.015 g m–2 yr–1), the wetlands retained < 0.001 to 0.015 g M–2 yr–1 ; however, this wasless than 20% of the inputs and the estimated budget uncertainties were equal to or greater than the retention rates. Annual TN retentions ranged from –0.44 to 0.56 g m–2 yr–1 (–12 to 4%) but were not significantly different from zero. The wetlands transformed nitrogen by retaining TIN (16 to 80% RT) and exporting an equivalent amount as TON (–7 to 102% RT). The beaver ponds, however, retained NO 3 while NH 4 + was passed through or the outputs exceeded the inputs. In contrast, the conifer swamps retained both NH 4 + and NO 3 . DOC fluxes into and out of the beaver ponds were equal (–18 and 4% RT) but output from the conifer swamps exceeded input by > 90%. Marked seasonal trends in nutrient retention were observed. Nutrient retention coincided with low stream flow, increased evapotranspiration and biotic uptake during the summer. Net nutrient export occurred during the winter and spring when stream flows were highest and biotic uptake was low.  相似文献   
996.
Klapwijk  S. P.  Bolier  G.  van der Does  J. 《Hydrobiologia》1989,188(1):189-199
Four hundred and forty bioassays with Scenedesmus quadricauda (Turp.) Bréb. as a test organism have been carried out with samples from canals and lakes in the western part of the Netherlands. The results are used to assess the algal growth potential (AGP) and to determine the limiting nutrient(s) for maximum biomass production. Special attention has been paid to the effects of deep-freezing and autoclaving as pretreatment of water samples on pH and nutrient concentrations.The AGP ranged from very low in the relatively isolated polder lakes to very high in canals and lakes, which form part of the basin system of Rijnland. The lowest yields are observed in nitrogen and phosphorus co-limited waters, while the highest are found in waters limited by nitrogen alone. AGP proved to be primarily determined by the amount of nitrogen, especially nitrate, in the samples and only secondarily by the amount of phosphorus.The observed ranges indicating phosphorus limitation, > 50 for inorganic and > 30 for total N/P ratios, lie considerably higher than reported so far. It is concluded that, once the relations between AGP and nutrients are established, AGP tests do not have to be carried out routinely, but still can be very useful in special studies, e.g. in lake restoration projects.  相似文献   
997.
We investigated the effect of Zn availability on growth rate (μ), cell morphology, and elemental stoichiometry and incorporation rate in two marine diatoms. For the coastal diatom Skeletonema costatum (Grev.) Cleve, the half‐saturation constant (KS) for growth was 4.1 pM Zn2+, and growth ceased at ≤ 2.6 pM Zn2+, whereas for the oceanic diatom Thalassiosira oceanica Hasle, KS was 0.5 pM Zn2+, and μ remained at ~40%μmax even at 0.3 pM Zn2+. Under Zn‐limiting (Zn‐L) conditions, S. costatum decreased cell size significantly, leading to an 80% increase in surface area to volume ratio (SA/V) at Zn2+ of 3.5 pM compared to Zn‐replete (Zn‐R) conditions (at Zn2+ of 13.2 pM), whereas T. oceanica’s morphology did not change appreciably. Cell quotas of C, N, P, Si, and chl a significantly decreased under Zn limitation in S. costatum (at Zn2+ of 3.5 pM), whereas Zn limitation in T. oceanica (at Zn2+ of 0.3 pM) had little effect on quotas. Elemental stoichiometry was ~85C:10N:9Si:1P and 81C:9N:5Si:1P for S. costatum, and 66C:5N:2Si:1P and 52C:6N:2Si:1P for T. oceanica, under Zn‐R and Zn‐L conditions, respectively. Incorporation rates of all elements were significantly reduced under Zn limitation for both diatoms, but particularly for Si in S. costatum, and for C in T. oceanica, despite its apparent tolerance of low Zn conditions. With [Zn2+] in some parts of the ocean being of the same order (~0.2 to 2 pM) as our low Zn conditions for T. oceanica, our results support the hypothesis that in situ growth and C acquisition may be limited by Zn in some oceanic species.  相似文献   
998.
We examined the effects of extreme seasonality on the activity budget and diet of wild chacma baboons with access to a high‐quality, human‐derived food source. The Cape Peninsula of South Africa is unusual among nonhuman primate habitats due to its seasonal extremes in day length and climate. Winter days are markedly shorter and colder than summer days but have higher rainfall and higher primary production of annually flowering plants. This combination of fewer daylight hours but higher rainfall is substantially different from the ecological constraints faced by both equatorial baboon populations and those living in temperate climates with summer rainfall. We sought to understand how these seasonal differences affect time budgets of food‐enhanced troops in comparison to both other food‐enhanced troops and wild foraging troops at similar latitudes. Our results revealed significant seasonal differences in activity budget and diet, a finding that contrasts with other baboon populations with access to high‐return anthropogenic foods. Similar to nonprovisioned troops at similar latitudes, troop members spent more time feeding, socializing, and traveling during the long summer days compared to the short winter days, and proportionately more time feeding and less time resting in summer compared to winter. Summer diets consisted mainly of fynbos and nonindigenous foods, whereas winter diets were dominated by annually flowering plants (mainly grasses) and ostrich pellets raided from a nearby ostrich farm. In this case, food enhancement may have effectively exaggerated seasonal differences in activity budgets by providing access to a high‐return food (ostrich pellets) that was spatially and temporally coincident with abundant winter fallback foods (grasses). The frequent use of both alien vegetation and high‐return, human‐derived foods highlights the dietary flexibility of baboons as a key element of their overall success in rapidly transforming environments such as the South African Cape Peninsula. Am. J. Primatol. 72:104–112, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
999.
1. Grazing by invasive species can affect many aspects of an aquatic system, but most studies have focused on the direct effects on plants. We conducted mesocosm and laboratory experiments to examine the impact of the invasive apple snail Pomacea canaliculata on macrophytes, filamentous algae, nutrients and phytoplankton. 2. In a freshwater pond, we confined 500 g of Myriophyllum aquaticum or Eichhornia crassipes with 0, 2, 4 or 8 apple snails in 1 m × 1 m × 1 m enclosures for approximately 1 month. Apple snails grazed heavily on both species of macrophytes, with higher overall weight losses at higher snail densities. The damage patterns differed between the two macrophytes. In M. aquaticum, both leaves and stems suffered from substantial herbivory, whereas in E. crassipes, only the roots suffered significant weight reduction. 3. In addition to grazing on macrophytes, apple snails appeared to have controlled the growth of filamentous algae, as these did not develop in the snail treatments. The ability of P. canaliculata to control filamentous algae was supported by a laboratory experiment where the consumption was as high as 0.25 g g−1 snail DW d−1. Because of a lack of native herbivorous snails in the pond, the growth of filamentous algae (mainly Spirogyra sp.) reached 80.3 g m−2, forming a spongy pond scum in the no‐apple snail control. Together with previous reports that apple snails could eat the juveniles and eggs of other freshwater snails, our results indicated that P. canaliculata could have out‐competed native herbivorous snails from the pond by predation on their juveniles or eggs. Alternatively, P. canaliculata might have out‐competed them by monopolisation of food resources. 4. Nitrogen and phosphorous concentrations remained low throughout both experiments and were not correlated with apple snail density. The treatment effects on chlorophyll a (Chl a) and phytoplankton composition varied in the two experiments. In the M. aquaticum experiment, with increasing snail density, Chl a increased, and the phytoplankton community became dominated by Cryptophyceae. In the E. crassipes experiment, Chl a level was independent of snail density, but with increasing snail density, the phytoplankton community became co‐dominated by Cryptophyceae, Chlorophyceae and Bacillariophyceae. 5. Given the multiple effects of P. canaliculata on wetland biodiversity and function, management strategies should be developed to prevent its further spread. In invaded wetlands, strategies should be developed to eradicate the apple snail and re‐introduce native snails which can control the development of filamentous algae.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号